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Forces on bodies moving transversely through a 
rotating fluid 
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Geophysical Fluid Dynamics Laboratory, Meteorological Office, 

Bracknell, Berkshire, England 

(Received 13 July 1974 and in revised form 7 May 1975) 

Measurements have been made of the net force F acting on a bluff rigid body 
moving with velocity U (relative to  a fluid rotating about a vertical axis with 
uniform angular velocity Q) in a plane perpendicular to  the axis of rotation. 
The force F is of magnitude 2Qp V U ,  where p is the density of the fluid and V is 
a volume which depends on the size and shape of the body. The relative direction 
of F and U is found to depend on the quantity 

where L and hare horizontal and vertical lengths characterizing the object and D 
is the depth of the fluid in which the object is placed. 

1. Introduction 
A problem of general interest is the determination of the net forces acting on 

bodies moving through a rotating fluid. Interest in these forces was shown by 
Taylor (1923), who predicted theoretically, and verified by experiment, a simple 
but striking result: in a fluid rotating about a vertical axis the force exerted by the 
fluid on any object moving horizontally about which the fluid motion should be 
horizontal, such as an upright cylinder, is equal and opposite to the Coriolis force 
on a mass of fluid with the same volume as the object. Thus if the object has the 
same density as the fluid, as i t  did in Taylor’s experiment, i t  moves through the 
fluid exactly as if the system were not rotating. The Coriolis force on the object 
is exactly balanced by the force of the fluid. On the other hand Taylor found that 
an object about which the motion was three dimensional, such as a sphere, was 
deflected by the Coriolis force. 

For Rossby numbers (R = UlSZL, where U is the flow speed, Q the rotation 
speed and L a typical horizontal length) smaller than those used by Taylor in 
the aforementioned experiment the constraint of rotation forces the motion about 
the sphere to be two-dimensional (the Taylor-Proudman theorem: Proudman 
1916; Taylor 1923). The flow past the object can then be divided into two regions 
separated by an imaginary cylinder, with axis parallel to the axis of rotation, 
which circumscribes the object. Outside this cylinder (a ‘Taylor column’) the 
flow behaves as if i t  were encountering a solid cylinder. 
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Following the work of Taylor and Proudman a number of theoretical stitdies 
of the effect of rapid rotation on transverse flow past objects have been made 
(e.g. Grace 1926; Stewartson 1953, 1967; Hide 1961; Jacobs 1964; Moore & 
Saffinan 1969). Of particular interest here are those studies which have calculated 
the net force on the object. These theories, which all assume that the Rossby 
number is very small, differ in whether the fluid is bounded or unbounded and 
whether the flow is steady and viscous or unsteady and inviscid. 

Stewartson (1953) considered the flow produced by impulsively startring an 
ellipsoid from rest into steady motion. The fluid was inviscid and unbounded 
and the Rossby number zero. As the length c of the vertical axis of the ellipsoid 
increased from zero the ultimate force FN on the ellipsoid a t  right angles to the 
direction of motion and in the opposite direction to the Coriolis force was found 
to increase from zero to Taylor’s two-dimensional value G ( = 2QnpUV, where p is 
the density of the fluid and V the volume of the object). This force showed only 
a weak dependence on the rabio of the horizontal axes of the ellipsoid. The dissi- 
pative force FT in the direction opposite to  that of the motion showed a stronger 
dependence on the horizontal dimensions of the ellipsoid. If a is the length of the 
ellipsoid axis in the direction of motion and b is the length of the horizontal axis 
at  right angles to this, the force FT increased with b/a (see figure 11).  This force 
also depended on the length c of the vertical axis and was small for small and 
large c, having a maximum value when c/(ab): - 1 (see figure 11) .  In  the case of 
a sphere FN = 0.38G and FT = 0.49G. 

Using a similar approach Stewartson (1967) considered the motion of a sphere 
in a fluid between two horizontal planes. The fluid was inviscid and the Rossby 
number zero. The Taylor-column flow pattern he obtained is identical to that 
found by Jacobs in a geometrically similar problem which, unlike Stewartson’s, 
was dominated by viscosity. In  this case Stewartson found the ultimate force to 
be equal to that occurring with an object about which the flow is two-dimensional, 
i.e. FT = 0, E,, = G. 

Other theories (Moore & Saffnian 1969; Wilcox 1972) consider the steady 
motion of thin disks through a viscous fluid contained between two horizontal 
planes. The drag on the disk is found to be viscous and due to Ekman-layer 
stress. 

In  comparing the experimental results with these theories i t  will clearly be 
necessary to determine whether or not the flow gives rise to a Taylor column. 
Fortunately previous work on Taylor columns gives some insight into this. Hide 
(1961) has proposed a criterion depending on the change in vorticity necessary 
for a filament to cross the object and the vorticity of the basic flow. A Taylor 
column should form for an object of width L in a fluid of depth D if the typical 
height of the object is greater than h,., where h, - DU/LQ. 

Most of the previous laboratory experiments (Hide & Ibbetson 1966; Hide, 
Ibbetson & Lighthill 1968; Vaziri 8: Boyer 1971; Davies 1972) have concen- 
trated on the form of the flow rather than the criterion for the change in flow 
type. However, these experiments (in particular Hide & Ibbetson 1966) demon- 
strate that Hide’s criterion is important and suggest that a Taylor column forms 
when 9 = 2RLh/DU is in the range 1-100. 
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I n  what follows, the results of two different experiments are presented. I n  the 
first experiment a pendulum arrangement is used to measure the net force F 
acting on an object moving through a rotating fluid. This experiment provides 
a fairly direct measure of the force, but is limited inasmuch as the object has to be 
a spheroid. The second experiment uses a spinning-disk arrangement which in 
essence compares the drag force acting on the object with the drag force due to 
an Ekman layer. This experiment has no restriction on the shape of the object 
bu t  has the drawback of giving only an indirect and more uncertain measure of 
the drag force with no information on the sideways or lift forces. 

The most straightforward result of the experiments confirms the results of 
Stewartson’s (1967) theory. When the motion is sufficiently slow for a Taylor 
column to form the dissipative or drag force FT is very small, being roughly equal 
in size to  an order-of-magnitude estimate of the viscous forces, which were, by 
design, otherwise negligible in the present experiments. The sideways or ‘lift’ 
force FN equals G, i.e. the object is subject to a force equal and opposite to the 
Coriolis force acting on a mass of fluid with the same volume as the object. Thus, 
had Taylor (1923) in his experiments with a cylinder and sphere (of density equal 
t o  the fluid) moved his sphere very slowly through the fluid, then, like the 
cylinder, it would have been undeflected by the Coriolis force. 

At velocities higher than those a t  which a Taylor column forms both the drag 
force 3’’ and lift force FN are comparable to, but less than, G. Thus the reduction 
in FT and increase in FN provide an objective criterion for the occurrence of a 
Taylor column. The present results agree with previous work in indicating that 
Hide’s criterion hc N DUILSZ is appropriate. 

The ratio of the non-rotating drag force JpAU2 (where A is the area of the 
object in a plane perpendicular to U) to the typical size of the ‘rotating’ drag 
force G is &R in the case of a sphere. Thus, for Rossby numbers of unity and less, 
the rotating drag force dominates and the experiments show that, provided a 
Taylor column does not form, this drag force FT scaled in terms of G is constant. 
In the case of a sphere, FT N 0.5 and the lift force 3’’ is close to zero unless t,he 
parameters approach a combination giving Taylor-column formation. 

The drag and lift forces are influenced by the shape of the object. The depen- 
dence of the lift force on the horizontal aspect ratio of the object (cf. reference to 
Stewartson 1953 above) was not investigated since only objects with a = b could 
be used in the ‘pendulum ’ experiments. The lift force was found to increase with c 
and, in agreement with Taylor’s experiment, when c was close to the depth of the 
container the lift force was G for all Rossby numbers. The drag force depended 
on c to a lesser degree and was small for small c, but unfortunately the measure- 
ments a t  large c were confused by Taylor-column formation. The drag force 
showed a strong dependence on b/a and FT was found to be roughly equal to 
0.5 G b/a for c/(ab)t N 1. 

Such drag forces comparable with G were first observed in experiments on 
‘ spin-up ’ in non-axisymmetric containers (Collier & Hide, private communica- 
tion). Apart from their intrinsic interest these forces are potentially important in 
geophysical phenomena. There are no theories which have direct relevance to the 
parameter range of the experiments for which a drag force N G occurs. However, 
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FIGURE 1. Schematic diagram of pendulum apparatus. 

the ex;perimental results are strikingly similar to the results of a theory which 
does not have obvious relevance to the experiments: Stewartson’s (1953) theory 
for the force acting on an ellipsoid as it moves through an inviscid unbounded 
fluid a t  zero Rossby number agrees remarkably well with the experimental 
results for which a Taylor column did not form. No explanation is offered for this 
surprising quantitative agreement. 

The pendulum experiment and its results are described in 392.1 and 2.2 
respectively and the spinning-disk experiment and its results are described in 
$ 5  3.1 and 3.2 respectively. 

2. The ‘pendulum’ experiment 
2.1. Apparatus and experimenta1.method 

Apparatus. The apparatus used is schematically illustrated in figure 1. The object 
was suspended on a copper wire 0.005cm in diameter from a rigid support 
mounted on a tripod attached to a turntable. The point of suspension was a fine 
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FIGURE 2. (a )  Forces in the plane of the pendulum bob and the axis of rotation (any vertical 
forces due to the fluid have been neglected; see text). ( b )  Forces in a horizontal plane con- 
taining the pendulum bob. ( c )  Illustrating the method of calculation of the tangential and 
normal accelerations of the pendulum bob from the position of three images A ,  B and C each 
separated by a time interval At. The tangential acceleration a~ = (AB cos a - BC cos P)/At2  
and the normal acceleration aN = ( A B  sin a + BC sin/3)/At*, where a and P are defined such 
that they are negative angles when the line bisecting CB and BA lies to the right of the U 
direction at point B. 

hole 0.01 cm in diameter in a clear acrylic sheet. This hole was positioned within 
0.05cm of the axis of rotation. The length 1 of the pendulum formed by this 
arrangement was nominally 1 m and was measured to an accuracy of 1 mm by 
a cathetometer. The object was immersed in a fluid in a rectangular container 
60 cm long, 30 cm wide and 30 cm deep which was mounted on the turntable 
beneath the tripod. The base and walls of the container deviated from the 
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horizontal and vertical by less than 2 x 10-3rad and t'he axis of rotation of the 
apparatus deviated from the vertical by less than 3 x 10-4rad. 

The turntable was driven by a synchronous induction motor via a Graham 
continuously variable speed transmission unit. Typical values of !2 were 0.25-3 
rads-1 and could be maintained constant to an accuracy of 0.1 yo for periods 
of order 1 h. Individual rotation periods could be measured by means of an 
electronic timing unit actuated when a beam of light from a lamp fixed in the 
laboratory reflected by a plane mirror mounted on the turntable was int,ercepted 
by a fixed photo-resistor. 

A 35 mm camera was mounted on the tripod attached to the turntable, with its 
lens centred on the axis of rotation, looking through the clear acrylic sheet from 
which the object was suspended (see figure 1) .  The object was painted black and 
a small white cross was drawn through the point of suspension. The base of the 
rectangular container was also painted black so the camera saw the object as 
a small white cross. The object was illuminated by means of a stroboscopic light 
source. Provided that the rotation rate !2 was not greater than (g/Z)i (g being the 
acceleration due to gravity) the equilibrium position of the pendulum was a point 
on the axis of rotation, and this position was recorded photographically. 

Experimental procedure. I n  each experimental run the object was carefully 
drawn to one side by a horizontal rigid wire. It was held by this wire such that 
the weight of the object was borne by the suspending wire and the centre of mass 
of the object lay on the extrapolated line of the suspending wire. The object 
could then be released in a controlled manner by pulling aside the rigid wire. At 
the moment of release the camera shutter was opened and with t'he stroboscopic 
illumination the trajectory of the bob was recorded. From the resulting photo- 
graphs the distance of each image from the axis of rotation and the distance 
between adjacent images were measured. Allowance for geometric distortion 
was made by photographing rules in the plane of movement of the object. From 
each set of three adjacent measurements of radius and two of image separation 
i t  is a simple matter to compute the forces FT and FN acting on the bob, and the 
method of calculation is illustrated by figures 2 (a)-(c). The vertical acceleration 
of the object is negligible compared with mg' (see below) and the size of the 
vertical force experienced by a body falling axially through a rotating fluid can 
be deduced from previous experiments (Maxworthy 1970). For the range of 
parameters appropriate to the present experiments this force is N 2Qpw V ,  where 
w is the vertical velocity of the object. I n  the present work this leads to a value of 
the force always very much less than mg'. The total errors in the measurement of 
the lengths were estimated to be f 0.05 mm, and with the typical image separa- 
tion ( N 1 cm) the total random errors in the value of force were about f 20 yo. 

The parameter range of the measurements was varied by two methods: either 
the rotation rate was altered or the density of the fluid in which the objects were 
immersed was changed. The objects were made of Perspex (density pr, = 1.35 g 
~ m - ~ ) .  Thus in fluid of density p the objects move under reduced gravity 
g' = g ( p p  -p) /p.  The basic fluid used was water and the changes in density were 
achieved by using salt (sodium chloride) solutions; concomitant changes in the 
kinematic viscosity were relatively small. Low Rossby number measurements 
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FIGURE 3. Illustrating the dependence of the trajectory of the bob on rotation rate. 
( a )  R = 0,  flash interval = 0.27 s. ( b )  R = 043rads-l, flash interval = 0.51 s. (c) R = 1.25 
rad s-l, flash interval = 0.71 s. (d )  R = 2.80 rad s-l, flash interval = 1.47 s. The curvature 
of the trajectory ( a )  a t  R = 0 is due to asymmetric shedding of eddies. The cusps in the 
trajectories ( b )  and (c) a t  R = 0.63 and 1.25 rads-1 are due to inertial overshoot. The smooth 
trajectory (d )  at R = 2.50rads-1 is typical of one used for measurement. 

were obtained with (p,-p)/p small and s1 large ( N 3rads-I). High Rossby 
number measurements were obtained with pure water as the fluid and SZ moderate 
( -  1.5rads-I). It was not possible to make accurate measurements a t  low !2 
( - 0.5 rad s-1) because of the cusps (see figure 3) in the trajectory. These cusps 
were due to the relative importance, a t  low Q, of the inertia of the object and 
were not adequately recorded by the measurements. 

Limitaiions of experiment. The forces on the objects in the range of Rossby 
numbers 10-2-1 are very small (of the order of dynes) and in a rotating frame 
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would be very difficult to measure directly. The present experiments provide 
a very simple method of measuring these forces but do have several inherent 
defects. 

(a) Eddies are shed by objects and consequently the drag force varies with 
time. The method of measurement averages this effect to some degree but the 
remaining variations are typically 20 yo of the mean drag and lead to some scatter 
in the experimental results. 

(b )  The data were intended to represent a steady-state drag, but clearly the 
bob was always accelerating to some degree. To minimize this effect the data 
were obtained from the central third of the trajectory between the point of 
release and the origin. Over this distance the speed was found (at the values of S l  
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used; see above) to vary by less than 20 % of its mean value. Indeed over this 
part of the trajectory the changes in the kinetic energy of the object were less 
than a few per cent of the changes in its potential energy. For R - 1 the apparatus 
performed about t hee  revolutions between the time of release and time of arrival 
a t  the central third of the trajectory, and since the number of revolutions in this 
period is proportional to R-l, for most of the data motion on the time scale 
must have been close to equilibrium. 

(c) The upper surface of the fluid in which the object was immersed was free 
and thus, owing to the effects of rotation, was slightly parabolic in shape. This 
change in depth with radius led to a deflecting force on the object. An order-of- 
magnitude comparison between the characteristic length scales due to this force 
and that due to the Coriolis force, i.e. between ( U / p ) i  and U / Q  (where ,5 = 2Qte/D, 
8 is the slope of the free surface and D is the depth of the fluid), shows that in the 
worst case (U/,8)4 was N 3cm, compared with U/sZ - 0*05cm, i.e. the forces 
due to the change of depth should have been negligible. 

U /  Rr 

FIGURE 4. Experimental values of the drag (3’~) and lift ( F N )  forces for different values of 
the Rossby number. The bob was a sphere. The working fluid varied between pure water and 
sodium chloride solution of density 1 . 2 g ~ m - ~ .  0, F N I Z R ~ U V ;  +, F T / ~ R ~ U V .  (a )  Bob 
radius = 1.85 cm, fluid depth = 18 cm. ( 6 )  Bob radius = 0.95 cm, fluid depth = 18 cm. 
( c )  Bob radius = 1-85cm, fluid depth = 8cm. 

2.2, Results 

Spheres. Measurements were made, as desoribed in 3 2.1, of the force on spheres of 
varying size in fluids of varying depth. Figures 4 (a)-(c) show some typical results. 
The size of the sphere varies between figures 4 ( a )  and ( b )  and the depth of the 
fluid between figures 4 ( b )  and (c). The drag force FT and lift force FN are scaled in 
terms of G and plotted against the Rossby number. The drag force decreases as the 
Rossby number decreases and it is evident that the value of the Rossby number 
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FIGURE 5 .  Experimental values of the drag (FT)  and lift (3") forces for different values of 
the Rossby number. This graph includes all the data for spherical bobs. The radius of the 
sphcrc was varied from 0.85 to 2.55 cm and the depth of the fluid from 8 to 18 cm. Symbols 
as in figure 4. 
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FIGURE 6. Experimental values of the drag ( F T )  and lift ( F N )  forces for different values of 
Hide's Taylor-column parameter 9 = 8Rr2/DU. The graph includes all the points shown 
in figure 4(c). Symbols as in figure 4. 
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FIGURE 7. Experimental values of the drag (FT) and lift (PN)  forces for different values of 
the Rossby number. The bob was a circular cylinder with spherical end caps. The depth 
of the fluid was 18 cm. The working fluid varied between pure water and sodium chloride 
solution of density 1.2gcm-3. (a) Cylinder radius = 1*20cm, total height = 7.6cm. ( b )  
Cylinder radius = 0.36 cm, total height = 15 cm. Symbols as in figure 4. 

at which the main decrease occurs depends upon both the size of the sphere and 
the depth of the fluid. A t  Rossby numbers less than unity, but higher than those 
corresponding to the main decrease in drag, the drag force is roughiy constant 
at N 0.56. The size of the non-rotating drag force &pAU2 is significant only for 
Rossby numbers greater than unity. 
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The lift force &,, is close to zero for higher Rossby numbers but tends to G 
as the Rossby number becomes small. As with the drag force, the values of the 
Rossby number for which the lift force changes are seen to depend on both 
the size of the sphere and the depth of the fluid. 

In the experiments the radius of the sphere was varied from 0.95 to 2.55cm 
and the depth D of the fluid was varied from 8 to 18 cm. The data obtained from 
all these experiments are plotted against the Rossby number in figure 5. The 
considerable scatter should be compared with figure 6, in which the same data are 
plotted against Hide’s Taylor-column parameter 9’ = 8Qr2/DU. The scatter in 
figure 6 is much less and comparable with the experimental errors. For Y < 1 
the lift force is small and in the range Y = 1-100 it increases to G .  Visual 
observations in the present and previous (Hide & Ibbetson 1966) experiments 
indicate that this range Y = 1-100 corresponds to the formation of a Taylor 
column over the object. As the lift force increases, the drag force decreases and 
tends to a value that order-of-magnitude calculations show to be comparable 
with that due to Ekman layers. 

Cylinders. A few experiments were carried out with objects of roughly 
spheroidal shape. Oblate objects were found to tilt their axes to and fro as they 
moved through the fluid. In consequence their motion was jerky and accurate 
measurements were impossible (cf. Stewartson 1954). Prolate objects moved 
smoothly and figures 7 ( a )  and ( b )  show measurements using cylinders with spheri- 
cal caps. As the length of the cylinder approaches the depth of the fluid the results 
show a clear trend towards Taylor’s two-dimensional result. The lift force 
increases towards G whilst the drag force decreases ttowards the non-rotating 
value. 

3. The spinning-disk experiment 
3.1. Apparatus and experimental method 

Apparatus. The apparatus is illustrated schematically in figure 8. A clear acrylic 
plastic cylinder of internal radius 14.00cm was mounted on a turntable. The 
cylinder had a fixed base and contained two immiscible liquids. The lower layer 
(2.8 cm deep) was a nearly saturated solution of potassium iodide in water with 
density 1.65 g ~ m - ~ .  The upper layer (of depth D = 19.0 cm) was paraffin (kerosene) 
with density 0.77 g and kinematic viscosity v = 1.39 x 10-2 cm2 s-1. A plastic 
disk 1.8 cm thick and of radius 12.97 cm floated between these two liquids. An 
alloy disk of thickness 0.62cm and radius b = 13-77cm was mounted on the 
output shaft of a motor and gearbox and suspended from the lid of the cylinder 
such that it lay below the upper surface of the paraffin layer. The objects were 
glued directly onto the underside of this disk. The axis of rotation of the turn- 
table deviated from the vertical by less than 3 x rad and the base and wall 
of the Perspex cylinder deviated from the horizontal and vertical respectively 
by 2 x 10-3rad. The upper (alloy) disk was horizontal to within 10-3rad and 
concentric with the inside of the Perspex cylinder to within 0.01 cm. The upper 
(alloy) disk was made to rotate slower than the turntable and thus drive the 
flow. 
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FIGURE 8. Schematic diagram of spinning-disk apparatus. 

The turntable was driven by a synchronous induction motor via a Graham 
continuously variable speed transmission unit. The typical value of IR, the 
turntable's angular speed, was 2.5 rad s-1 and could be maintained constant to 
within 0.1 yo over periods of the order of 1 h. Individual rotation periods 27r/Q 
could be measured by means of the electronic timing unit mentioned in 3 2.1. The 
rotation speeds relative to the turntable of the upper (alloy) disk and the floating 
(plastic) disk were measured in a similar way. The lamps and photo-resistors 
were mounted on the turntable and the plane mirror replaced by small pieces 
of reflective adhesive tape. In  order to average out small fluctuations in the 
rotation speeds the electronic counter was set to measure ten rotation periods. 
The rotation periods of the turntable and upper spinning disk averaged over ten 
rotation periods were constant to within 0.025y0. The rotation period of the 
floating disk was constant to the same accuracy when no objects were attached 
to the upper spinning disk, but with objects attached it was slightlyless constant. 

For the purpose of the experiment it was essential that the floating disk 
remained in the centre of the cylinder and did not touch its sides. With no objects 
attached to the upper spinning disk the parabolic shape of the geopotentials was 
a sufficient constraint. With an object on the upper spinning disk a further con- 
straint wa,s found to be necessary: two round bar magnets with symmetrical 
fields were used (see figure 8). One magnet was mounted vertically a t  the centre of 
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the lower side of the floating disk whilst the other was mounted on the centre of 
the base of the tank. The attractive force between these magnets was found to 
reduce any sideways movements of the floating disk to less than 0.5 mni. 

Method of measurement. The principle of the experiment is that  the torque 
introduced into the fluid by the upper spinning disk must be communicated 
through the floating disk to  the base of the apparatus. To communicate the 
torque the floating disk must also spin relative to the base and the magnitude of 
this spin is a measure of the torque transmitted. I n  order to make calculating the 
size of the torque tractable the parameters of the experiment were arranged such 
that the Ekman-layer dynamics dominated the flow, i.e. such that the Eknian- 
layer spin-up time scale t, = D/2(0v)* ( N 50 s here) was very much less than the 
viscous diffusion time scale t, = b2/v ( N 1.4 x 1 O4 s here) and the Ekman number 
v/QD2 < 1 ( N 2 x here). For linear Ekman-layer equations to  apply the 
Rossby number AQ/Q, where AQ is the differential rotation of the fluid relative 
to the disk, must be less than N 1 (a maximum of - 0-15 here) (Greenspan 1968, 
93). To calculate the torque the Ekman layers must also be stable, and the 
experiments of Tatro & Mollo-Christensen (1967) show that, for the Rossby 
numbers used in the present work, the Reynolds number Re = SU/v  (where S is 
the Ekman-layer thickness (v /Q)*)  must be less than N 75 for this to be so. The 
largest value of this Reynolds number in the present work was N 50 and more- 
over flow visualization with aluminium powder showed the boundary layers to be 
free from such instability. 

I n  order to avoid the difficult task of obtaining a complete theory for the flow 
in the apparatus a comparison was made between each experiment with an 
object and a null experiment without the object. I n  an experiment with an object 
the angular speeds Ql, Q2, and O3 of the turntable, floating disk and spinning 
disk respectively were measured. Then in the experiment without the object Q, 
was left unaltered and Q3 adjusted to a new value Qz such that Q2 had the same 
value as before. In  practice with no object mounted the ratio (Q2,* - a,)/( Q2 - a,) 
was found to be a constant and the latter experiment was a hypothetical one 
based on the constancy of this measured ratio. It is then clear that provided that 
the frictional coupling between the turntable and floating disk is unchanged the 
torque transmitted through the disk in the two cases is the same. The frictional 
coupling is dominated by Ekman suction between the floating disk and the base 
of the container and the long-term reproducibility of the experiments show it to 
be constant. We may thus equate the torque due to  the object and spinning disk 
rotating a t  Q,with that due to the spinning disk alone a t  Q2,*, i.e. the Ekman-layer 
system with differential rotation Q2- Q,* transmits the same torque as the 
object/Ekman-layer system with differential rotation Q2 - Q3. 

We can parameterize the effect of the object as an equivalent Ekman layer of 
hhickness S,, so that the disk to which the object is attached has an Ekman 
layer of total thickness S + 8,. Such a parameterization is especially natural in 
view of the results of the pendulum experiment, in which the drag force on an 
object was found, like the stress due to an Ekman layer, to be proportional to U .  
The experiment thus provides an accurate method of determining this para- 
meterization of the effect of an object in the present system. It is clear that such 
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a study would show how 6, depends on the shape of the object and thus serve 
as a guide to which length scales might comprise the volume V in a geostrophic 
drag - 2pRUV when the object is not a sphere. I n  what follows an attempt is 
made to go further and use questionable assumptions to determine the force 
implied by a certain value of the equivalent Ekman-layer thickness 6,; in view 
of the agreement with the pendulum experiment and certain internal empirical 
checks the attempt appears successful. 

The prototype of the problem we are considering is the flow due to a slow 
differential rotation of the upper and lower horizontal boundaries of a cylinder 
of rapidly rotating fluid (Stewartson 1957). For example, consider a container 
having a mean basic rotation speed R with the upper and lower surfaces rotating 
at R - A 0  and R + AQ respectively. The interior region between horizontal 
Ekman layers of thickness 6 = (v/R)* and vertical shear layers of thicknesses 
(D2v/R)i and (Dv/R)+ is in rigid-body rotation at  R. The flow is controlled by the 
Ekman layers and the passive vertical shear layers serve only to permit return 
circulation and match horizontal velocity differences. This motion of t,he interior 
region relative to the boundaries develops balanced torques and mass fluxes in 
the Ekman layers with a vertical velocity uniform with height and of the same 
sign everywhere in the interior. The stress on a horizontal surface in the direction 
of U, where U is the flow above the Ekman layer on that surface, is 

i-E = pvU/b. (1) 

T = &p6RARb4~.  ( 2 )  

It follows that the torque on a disk of radius b spinning a t  0 - A R  relative to 
fluid rotating a t  i2 is 

To calculate the equivalent Ekman-layer thickness 6, we note that to be 
consistent with parameterizing the effect of the object as an equivalent Ekman 
laycr the interior flow in both the experiment with an object and the null experi- 
ment must be considered to be rigid-body rotation at  the same speed. In  t'he null 
experiment the upper and lower spinning disks rotate a t  R,* and Qz, and we have 
an interior flow a t  +(St: + Rz). In  the experiment with the object the balancing of 
Ekman torque between the upper Ekman layer, of thickness S+ S,, and the lower 
layer, of thickness 6, implies an interior rotation at  [6R2+ (6+ 6,) R3]/(26+ 6,). 
We couldequate these two interior speeds to obtain S,, but anticipating equations 
below, we take the equivalent step of equating the torques entering the fluid 
from the upper disk in both experiments, i.e. 

Thus 
26( R3 - R:) 

R2+R,.-2R, 
8, = (4) 

Visual observations of the flow using a suspension of aluminium powder 
showed the objects (whose Reynolds numbers varied between about I00 and 
3000) to be shedding eddies. This suggests that the retardation of the flow by the 
object will spread away from the location of the object and means that, with no 
theory for this spreading and other inevitable complications, we may calculate 
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the drag force only for circumstances under which the assumption that the 
interior region has a uniform regular velocity *( Q, + Q,*) leads to no significant 
error. This assumption is clearly never exactly true but we leave a discussion of 
its theoretical and empirical justification until after we have shown how the 
drag was calculated. 

We are assuming that the interior flow is that taken for the purpose of defining 
an equivalent Ekman-layer thickness 6,. It follows that the torque due to the 
object in excess of that due to the Ekman layer on the upper disk is 

TB = tp6~(n,+ag)[*(n,+Qg)-Q~]b~n. (5) 

If the object is small enough to be regarded as all being a t  a radius r the drag 
force on the object is 

FB = TB/r. (6) 

The azimuthal flow impinging on the object is 

U, = [&(a, + Q,*) - Q,] r .  

Thus we may define a geostrophic drag coefficient 

( 7 )  

where V is the volume of the object. Then, using (5)-(8), we obtain 

volume of equivalent Ekman layer 
volume of object 

The essential justification for this calculation is empirical and no complete 
theoretical justification is attempted. The following discussion is merely intended 
to make the calculation plausible and does not constitute a proof of its validity. 

First, we note the possibility that the turbulence produced by the object 
might affect the assumption of ordinary Ekman layers dominating the flow. 
Visual observations using an aluminium suspension showed that the smallest 
length scale appeared to be larger than the Ekman-layer thickness 6 and pessi- 
mistic order-of-magnitude calculations (Landau & Lifshitz 1963, $$32, 33) based 
on the energy input implied by the force on the object and internal viscous dissipa- 
tion confirm that the turbulence should be quite negligible on the length scale 6. 
Similar calculations of eddy viscosity are more uncertain but indicate that the 
turbulence should not cause a significant viscous coupling of the fluid to the side 
walls. This view is also supported by the visual observations, which indicated 
t h a t  the turbulence was confined to the neighbourhood of the object. 

Second, we consider the effect of any vertical variation in the interior flow; 
such variations are strongly inhibited by the constraint of rotation but because 
of difficulties in assigning values to appropriate length and velocity scales it is 
not obvious from order-of-magnitude calculations that they will be negligible. 
We thus note without giving a detailed proof that any vertical variation in 
interior speed which leads to the flow being less near the object than elsewhere will 
cause the calculated value of E to be an underestimate of the value based on 
a knowledge of the true flow. To illustrate this we can consider an interior rotation 
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Q, [ 1 + ez( Q, - a,)], where z varies between f between the upper and A oating 
disks. If we then introduce a new equivalent Ekman-layer thickness 82 balancing 
torques in and out of the fluid gives 

( ~ + ~ ~ ~ ; ) { [ Q , - ~ ~ ( Q z ~ - Q ~ ) I - Q ~ }  = S{QZ,- [QI+MQ~-Q~)I}  (10) 

and comparison with the null experiment [cf. equation (3)] gives 

(6+61f;)([Q,-g€(Q,-Q~)]-~,} = s[+(n,+n,*)-ag]. (11) 

E* = 81i;(b477/4V~2), (12) 

If we follow through steps equivalent to those in (4)-(8) we obtain a new value 
for E ,  say 

and comparison of (3) and (1 1 )  gives a relationship between values of S, and 6; 
for the same values of Ql, Q,, Q, and Qg, namely 

1 + s y s  -- - ( 1 - E ) -  1 + s,/s 
2 + S,/S 2 + s y s ’  

This shows that for differences between 8, and 8% to be less than 20% of 8, 
with 6,/6 in the range 0-1-2 (see below) 6 must be less than - 0.02. 

Last, we consider the consequences of the object only affecting the flow over 
a limited radial extent comparable with its own width. To obtain a feeling for how 
this might affect the calculations of E we consider a hypothetical system in which 
the object only influences an annular fraction a of the container. In this fraction 
we consider a model of the flow similar to that proposed for the whole system, 
and we define a new equivalent Ekman thickness 8; t o  occur in this region. It 
follows that the speed of angular rotation Q’ in the interior of region a required 
to  balance torques is given by 

(S + &&/a)/( Q’ - Q,) = S( Q, - Q,) (14) 

and in place of (3) we have 

&a( 1 -a) (Q2-  Q3) + ~ ( ~ + S & / C I . )  (a’ - a,) = S[-$(Q, + Qg) - Qg]. (15) 

We may then follow through steps equivalent to (4)-(8) and obtain a new value 
for E,  say 

The relationship between 6, and d; for the given values of Q,, a,, Q, and 0: 
obtained by comparing (3) and (15) is 

E’ = s;, (b477/4 Vr2). (16) 

We may now ask how large a must be for the difference between 8, and 8; to be 
less than 20% of 8,. We find that, for S,/S = 0.1, 0.5 and 2, a must be greater 
than 0.23, 0.60 and 0.85 respectively. 

For any reasonable model of the interior flow the assumptions made in cal- 
culating E imply the maximum possible flow speed impinging on the object con- 
sistent with communication of the torque to the float,ing disk via Ekman layers. 

38 F L Y  71 
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This means that the value of E we calculate should always be an underestimate, 
and gives extra weight to the empirical checks on t,he results by suggesting that 
the correct result is unlikely to be a fortuitous consequence of cancelling errors. 
The experiments have not established the full range of parameter space over 
which meaningful calculations of E may be made but have had the limited objec- 
tive of operating in a window of parameter space for which the pendulum 
experiment indicated a geostrophic drag force with which the data could be 
compared, i.e. R N 0.5-0.1, Y < 1. 

Apart from the above assumptions there are errors in 6, and hence E clue to 
uncertainties in the measured rotation periods. These lead t o  errors of 20 yo 
for S,/S in range 0.18-1 which increase as S,/S decreases or increases outside this 
range, and reach, for example, 5 32 yo at  S,/S = 0.1 and S,/S = 2. For this 
reason data for 6,/6 < 0.1 and 6,/6 > 2 were discarded and the errors from this 
source can be taken as typically 20 yo, which corresponds to the observed 
reproducibility of values of 6,. 

We are now in a position to comment on the empirical justification for the  
method of calculating E. When the spheres used in the pendulum experiment 
mere glued directly onto the lower surface of the upper disk a t  about the mid- 
radius the values of E obtained agreed with those obtained in the pendulum 
experiment to within ~f: 20 %. Also, provided that the objects did not extend to 
within l c m  of the edge of the disk, which would have brought them into the 
side-wall boundary layers, the values of E,  but not of course 6,, were found to be 
independent of the radius at which the object was placed. This result is more than 
a spot check and, in view of the above discussion, the independence of the values 
of E of the absolute size of the objects is of importance in indicating that the 
assumptions are substantially correct. I n  view of the discussion i t  is of particular 
importance that the effect of more than one object on 6, was found to be additive 
provided that the objects were more than 30" downstream of each other. 

In the case of objects which are not spherical in shape this empirical check 
could be regarded as inadequate. However, even for these objects the values of 
E are found to be independent of the absolute size of the objects and the effect of 
more than one such object on 6, additive (mounted 90 or 180" apart). If the 
above discussion is qualitatively correct this result implies that the values of E 
obt'ained are substantially correct and from the accuracy to which the effect of 
more than one object produces an additive effect on 6, ( N 20 yo) we can deduce 
the implied accuracy of the assumptions. We assume that the interior flow with 
an object on the upper disk is a rigid-body rotation a t  $(Q, + a:). The errors in 
this value of $( R, + Q:) can be no larger than - 5 % of Q, - Q3. The assumptions 
are only intended to be reasonable in the present context and it should be empha- 
sized that the flow is not', and could not be expected t o  be, exactly as it has been 
assumed. 

3.2. Results 

The effect of varying the horizontal aspect ratio. Preliminary experiments showed 
that cubes produced values of E which did not significant,ly differ from those for 
spheres of the same volume and consequently it was decided to avoid the expense 
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FIGURE 9. Illustrating the dependence of the geostrophic drag coefficient E on the horizontal 
aspect ratio B/A of the object. The height of the object G = 2.5 cm. A, + , B x 2 cm, varying 
A ;  ., 0 ,  A w 2 c m ,  varying B. R1=2.5rads-l. A, ., R,-R,=snrads-l; +, 0 ,  
R, - 0, = hnrad s-l. 
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FIGURE 10. Illustrating the dependence of the geostrophic drag coefficient E on the vertical 
aspect ratio C/(AB)b of the object. The graph includes data in which A ,  B and C are all 
varied independently of each other. The dependence of E on B / A  has been corrected for in 
accordance with the results in figure 9. 

of obtaining ellipsoids. The objects used in the experiments were parts of annular 
rings of height C, radial width B, and mean arc length A ,  such shapes being 
preferable to cuboids in view of the circular nature of the basic flow. Each piece 
of annular ring was mounted ‘concentrically’ on the upper disk to within 
- + 0.025 cm. In order to investigate the dependence of E on the ratio BIA two 
experiments were carried out. In one B was fixed and A varied, and in the other 
A fixed and B varied. These experiments were carried out a t  two values of the 
Rossby number. The higher value was chosen such that the non-rotating force 
gpAU2 was less than 10% of 2QpUt7, i.e. Q3- Ql = +rad s-l, and the lower 
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FIGURE 11. Curves of the geostrophic drag coefficient Ea/b based on Stewartson’s (1953) 
theory for l,he force on an ellipsoid moving transversely through a rotating fluid. a,  b and c 
are the half-axes of the ellipsoid. The crosses are meant to indicate the values of Ea/b 
expected in the experiments; they are positioned such that the aspect ratios of the ellipsoids 
in the theory correspond to the aspect ratios of the cuboids used in the experiments. 

value was chosen such that Hide’s Taylor-column parameter 9 was less than 0.1, 
i.e. Q3 - Q1 = rad s-l. The results of all these measurements are displayed in 
figure 9. The values of E are seen to be roughly proportional to the ratio B/A and 
roughly independent of both the Rossby number and the absolute values of A 
and B. Some of the scatter is due to random errors but some may be due to a slight 
dependence on Rossby number; by holding Q3 - Q1 fixed the Rossby number of 
the flow is only maintained nominally constant. This result implies that the drag 
forces do not depend on the volume of the object, i.e. ABC, but on B2C, i.e. they 
are nearly independent of A. 

The effect of varying the vertical aspect ratio. If the data are required to be free of 
Taylor-column formation, i.e. 9 < 1, and also meet the requirements of the 
calculation then it is not possible simply to choose a single value of B/A and vary 
the height of the object over a large range. Instead, for a number of values of 
B/A, C was varied as far as it could be and in order to prevent the variation of 
B/A confusing the results the values of EA/B are plotted against C/(AB)t in 
figure 10. The data are seen to be gathered together close to a single curve with 
a scatter of 5 0-1 in EA/B. The curve rises from zero for small C/(AB)* to a value 
of about 0.6 for C/(AB)a - 1. For large C/(AB)* there is evidence of a decrease. 

Comparison with Stewartson (1953). The theory of Stewartson (1953) gives 
values for the forces on an ellipsoid of volume V and axes a, b and c moving 
through an unbounded inviscid rotating fluid at  zero Rossby number. The drag 
forces from the theory are scaled in the same way as in the experiments and 
plotted against c/(ab)h in figure 11. The drag depends on a/b and curves are plotted 
for a/b varying from 6.0 to 0.10. To facilitate a comparison with the experiments 
points have been placed on this graph which correspond to  the values of A/B and 
C/(AB)t used in the experiments, i.e. such that A/B = a/b and C/(AB)* = c/(ab)i. 
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FIGURE 12. Illustrating the effect of Taylor-column formation on the geostrophic drag 
coefficient E .  The height C of an object with A = B = 2.5cm has been increased. Ex- 
perimental details: Q, = 2.5rads-1; x , (al- Rs)/Rl = 0.5, 0, (al- Rs)/R, = 0.25; 
0, (al- Q,)/R, = 0.125. The formation of Taylor columns leads to dependence of the 
goestrophic drag coefficient on Rossby number, i.e. (R, - Q3)/R1 (see also figure 13). 
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FIGURE 13. Illustrating the effect of Taylor-column formation on the drag force on an 
object. The height C of an object with A = B = 2.5 cm has been increased; apart from Taylor- 
column formation the drag force would be expected to increase roughly linearly with CID. 
The observed decrease is a striking indication of the consequences of Taylor-column forma- 
tion. Experimental details: R, = 2.5 r a . d ~ - ~ ;  x , (a, - SZ,)/R, = 0.5; 0, (a, - R,)/R, = 0.28; 
0, (Q, - Qs)/Rl = 0.125. Values of the reciprocal of Hide's Taylor-column parameter 
9 = 8D(AB)*/DU are given alongside each point. 
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The distribution of these points in figure 11 may be compared with figure 10. It 
may be seen t’hat, although there are differences of up to 50 yo between the experi- 
ments and the theory, there is on the whole a striking qualitative agreement. AS 
mentioned earlier, no explanation is given for this striking result, and following 
Greenspan (1968, p. 175) it  may be worth noting that “This similarity of a dis- 
tinctly non-linear motion and the limiting flow as t-+m of a linear theory is 
probably accidental ”. 

Taylor columns. The lowest Rossby numbers a t  which measurements can be 
made is governed by the stability of the turntable. Here (see $3.1) the stability 
of the turntable is 0.1 or 0.025 yo depending on whether the rotation period is 
measured over 1 or 10 periods respectively. The smallest value of ( Q3 - sZ,)/Q, 
used was 0.125 as for smaller values the turntable fluctuations would have caused 
unacceptably large errors. 

To illustrate the formation of a Taylor column the height C of an object with 
A = B was increased for three values of (a3- Ql)/Ql, 0.5, 0.25 and 0.125. The 
results are shown in figures 12 and 13. Figure 12 shows the results as they would 
appear on figure 10; for the large values of C/(AB)a and small Rossby numbers 
the scaled force is seen to fall off rapidly. For comparison figure 13 shows t’he 
unsealed data; i t  is evident that the force is a maximum before the Taylor column 
forms. Values of the Taylor-column parameter 9’-l are indicated against the 
points on figure 13. In  agreement with the results of the pendulum experiment, 
the scaled drag falls for Y in the range 2-12. 

The author wishes to thank Mr D. Moore for his care in conducting the labora- 
tory experiments and Dr R. Hide for the interest and support he gave to this 
work. This paper is published by permission of the Director-General of the 
Meteorological Office. 
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